Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Charge compensation in trivalent cation doped bulk rutile TiO2.

Identifieur interne : 001560 ( Main/Exploration ); précédent : 001559; suivant : 001561

Charge compensation in trivalent cation doped bulk rutile TiO2.

Auteurs : RBID : pubmed:21813953

English descriptors

Abstract

Doping of TiO(2) is a very active field, with a particularly large effort expended using density functional theory (DFT) to model doped TiO(2); this interest has arisen from the potential for doping to be used in tuning the band gap of TiO(2) for photocatalytic applications. Doping is also of importance for modifying the reactivity of an oxide. Finally, dopants can also be unintentionally incorporated into an oxide during processing, giving unexpected electronic properties. To unravel properly how doping impacts on the properties of a metal oxide requires a modelling approach that can describe such systems consistently. Unfortunately, DFT, as used in the majority of studies, is not suitable for application here and in many cases cannot even yield a qualitatively consistent description. In this paper we investigate the doping of bulk rutile TiO(2) with trivalent cations, Al, Ga and In, using DFT, DFT corrected for on-site Coulomb interactions (DFT + U, with U on oxygen 2p states) and hybrid DFT (the screened exchange HSE06 exchange correlation functional) in an effort to better understand the performance of DFT in describing such fundamental doping scenarios and to analyse the process of charge compensation with these dopants. With all dopants, DFT delocalizes the oxygen hole polaron that results from substitution of Ti with the lower valence cation. DFT also finds an undistorted geometry and does not produce the characteristic polaron state in the band gap. DFT + U and hybrid DFT both localize the polaron, and this is accompanied by a distortion to the structure around the oxygen hole site. DFT + U and HSE06 both give a polaron state in the band gap. The band gap underestimation present in DFT + U means that the offset of the gap state from both the valence and the conduction band cannot be properly described, while the hybrid DFT offsets should be correct. We have investigated dopant charge compensation by formation of oxygen vacancies. Due to the large number of calculations required, we use DFT + U for these studies. We find that the most stable oxygen vacancy site has either a very small positive formation energy or is negative, so under typical experimental conditions, anion vacancy formation will compensate for the dopant.

DOI: 10.1088/0953-8984/23/33/334207
PubMed: 21813953

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Charge compensation in trivalent cation doped bulk rutile TiO2.</title>
<author>
<name sortKey="Iwaszuk, Anna" uniqKey="Iwaszuk A">Anna Iwaszuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Tyndall National Institute, University College Cork, Lee Maltings, Cork</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Nolan, Michael" uniqKey="Nolan M">Michael Nolan</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2011">2011</date>
<idno type="doi">10.1088/0953-8984/23/33/334207</idno>
<idno type="RBID">pubmed:21813953</idno>
<idno type="pmid">21813953</idno>
<idno type="wicri:Area/Main/Corpus">001229</idno>
<idno type="wicri:Area/Main/Curation">001229</idno>
<idno type="wicri:Area/Main/Exploration">001560</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum (chemistry)</term>
<term>Gallium (chemistry)</term>
<term>Indium (chemistry)</term>
<term>Models, Chemical</term>
<term>Oxygen (chemistry)</term>
<term>Quantum Theory</term>
<term>Titanium (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Aluminum</term>
<term>Gallium</term>
<term>Indium</term>
<term>Oxygen</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Chemical</term>
<term>Quantum Theory</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Doping of TiO(2) is a very active field, with a particularly large effort expended using density functional theory (DFT) to model doped TiO(2); this interest has arisen from the potential for doping to be used in tuning the band gap of TiO(2) for photocatalytic applications. Doping is also of importance for modifying the reactivity of an oxide. Finally, dopants can also be unintentionally incorporated into an oxide during processing, giving unexpected electronic properties. To unravel properly how doping impacts on the properties of a metal oxide requires a modelling approach that can describe such systems consistently. Unfortunately, DFT, as used in the majority of studies, is not suitable for application here and in many cases cannot even yield a qualitatively consistent description. In this paper we investigate the doping of bulk rutile TiO(2) with trivalent cations, Al, Ga and In, using DFT, DFT corrected for on-site Coulomb interactions (DFT + U, with U on oxygen 2p states) and hybrid DFT (the screened exchange HSE06 exchange correlation functional) in an effort to better understand the performance of DFT in describing such fundamental doping scenarios and to analyse the process of charge compensation with these dopants. With all dopants, DFT delocalizes the oxygen hole polaron that results from substitution of Ti with the lower valence cation. DFT also finds an undistorted geometry and does not produce the characteristic polaron state in the band gap. DFT + U and hybrid DFT both localize the polaron, and this is accompanied by a distortion to the structure around the oxygen hole site. DFT + U and HSE06 both give a polaron state in the band gap. The band gap underestimation present in DFT + U means that the offset of the gap state from both the valence and the conduction band cannot be properly described, while the hybrid DFT offsets should be correct. We have investigated dopant charge compensation by formation of oxygen vacancies. Due to the large number of calculations required, we use DFT + U for these studies. We find that the most stable oxygen vacancy site has either a very small positive formation energy or is negative, so under typical experimental conditions, anion vacancy formation will compensate for the dopant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21813953</PMID>
<DateCreated>
<Year>2011</Year>
<Month>08</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-648X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>33</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Journal of physics. Condensed matter : an Institute of Physics journal</Title>
<ISOAbbreviation>J Phys Condens Matter</ISOAbbreviation>
</Journal>
<ArticleTitle>Charge compensation in trivalent cation doped bulk rutile TiO2.</ArticleTitle>
<Pagination>
<MedlinePgn>334207</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1088/0953-8984/23/33/334207</ELocationID>
<Abstract>
<AbstractText>Doping of TiO(2) is a very active field, with a particularly large effort expended using density functional theory (DFT) to model doped TiO(2); this interest has arisen from the potential for doping to be used in tuning the band gap of TiO(2) for photocatalytic applications. Doping is also of importance for modifying the reactivity of an oxide. Finally, dopants can also be unintentionally incorporated into an oxide during processing, giving unexpected electronic properties. To unravel properly how doping impacts on the properties of a metal oxide requires a modelling approach that can describe such systems consistently. Unfortunately, DFT, as used in the majority of studies, is not suitable for application here and in many cases cannot even yield a qualitatively consistent description. In this paper we investigate the doping of bulk rutile TiO(2) with trivalent cations, Al, Ga and In, using DFT, DFT corrected for on-site Coulomb interactions (DFT + U, with U on oxygen 2p states) and hybrid DFT (the screened exchange HSE06 exchange correlation functional) in an effort to better understand the performance of DFT in describing such fundamental doping scenarios and to analyse the process of charge compensation with these dopants. With all dopants, DFT delocalizes the oxygen hole polaron that results from substitution of Ti with the lower valence cation. DFT also finds an undistorted geometry and does not produce the characteristic polaron state in the band gap. DFT + U and hybrid DFT both localize the polaron, and this is accompanied by a distortion to the structure around the oxygen hole site. DFT + U and HSE06 both give a polaron state in the band gap. The band gap underestimation present in DFT + U means that the offset of the gap state from both the valence and the conduction band cannot be properly described, while the hybrid DFT offsets should be correct. We have investigated dopant charge compensation by formation of oxygen vacancies. Due to the large number of calculations required, we use DFT + U for these studies. We find that the most stable oxygen vacancy site has either a very small positive formation energy or is negative, so under typical experimental conditions, anion vacancy formation will compensate for the dopant.</AbstractText>
<CopyrightInformation>© 2011 IOP Publishing Ltd</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Iwaszuk</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<Affiliation>Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Nolan</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Phys Condens Matter</MedlineTA>
<NlmUniqueID>101165248</NlmUniqueID>
<ISSNLinking>0953-8984</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15FIX9V2JP</RegistryNumber>
<NameOfSubstance>titanium dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CH46OC8YV4</RegistryNumber>
<NameOfSubstance>Gallium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CPD4NFA903</RegistryNumber>
<NameOfSubstance>Aluminum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance>Titanium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance>Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Aluminum</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gallium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Quantum Theory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>8</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0953-8984(11)76667-X</ArticleId>
<ArticleId IdType="doi">10.1088/0953-8984/23/33/334207</ArticleId>
<ArticleId IdType="pubmed">21813953</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21813953
   |texte=   Charge compensation in trivalent cation doped bulk rutile TiO2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21813953" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024